Source code for pypahdb.decomposer

#!/usr/bin/env python3
"""decomposer.py

Subclass of DecomposerBase for writting results to disk.

This file is part of pypahdb - see the module docs for more
information.

"""
import copy
import sys
from datetime import datetime, timezone

import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS
from matplotlib import cm, colormaps, colors
from matplotlib.backends.backend_pdf import PdfPages
from mpl_toolkits.axes_grid1.inset_locator import inset_axes

import pypahdb
from pypahdb.decomposer_base import DecomposerBase, SMALL_SIZE, MEDIUM_SIZE


[docs] class Decomposer(DecomposerBase): """Extends DecomposerBase to write results to disk (PDF, FITS).""" def __init__(self, spectrum): """Initialize Decomposer object. Inherits from DecomposerBase defined in decomposer_base.py. Args: spectrum (specutils.Spectrum1D): The data to fit/decompose. """ DecomposerBase.__init__(self, spectrum) self._cation_neutral_ratio = None def _get_cation_neutral_ratio(self): """ Calculate the cation neutral ratio if it is not already calculated and return it. """ if self._cation_neutral_ratio is None: self._cation_neutral_ratio = self.charge_fractions["cation"].copy() nonzero = np.nonzero(self.charge_fractions["neutral"]) self._cation_neutral_ratio[nonzero] /= self.charge_fractions["neutral"][ nonzero ] return self._cation_neutral_ratio
[docs] def save_pdf(self, filename, header="", domaps=True, doplots=True): """Save a PDF summary of the fit results. Notes: None. Args: filename (str): Path to save to. header (str): Optional, header data. Keywords: domaps (bool): Save maps to PDF (defaults to True). doplots (bool): Save plots to PDF (defaults to True). Returns: None. """ with PdfPages(filename) as pdf: d = pdf.infodict() d["Title"] = "pyPAHdb Results Summary" d["Author"] = "Dr. C. Boersma, Dr. M.J. Shannon, and Dr. A. Maragkoudakis" d["Producer"] = "NASA Ames Research Center" d["Creator"] = "pypahdb v{}(Python {}.{}.{})".format( pypahdb.__version__, sys.version_info.major, sys.version_info.minor, sys.version_info.micro, ) d["Subject"] = "Summary of pyPAHdb Decomposition" d["Keywords"] = "pyPAHdb, PAH, database, ERS, JWST" d["CreationDate"] = datetime.now(timezone.utc).strftime("D:%Y%m%d%H%M%S") d["Description"] = ( "This file contains results from pyPAHdb. " "pyPAHdb was created as part of the JWST ERS " "Program titled 'Radiative Feedback from Massive Stars as " "Traced by Multiband Imaging and Spectroscopic Mosaics' (ID " "1288)). Visit https://github.com/pahdb/pypahdb/ for more" "information." ) if domaps is True: if isinstance(header, fits.header.Header): if "OBJECT" in header: d["Title"] = d["Title"] + " - " + header["OBJECT"] hdr = copy.deepcopy(header) hdr["NAXIS"] = 2 cards = [ "NAXIS3", "PC3_3", "CRPIX3", "CRVAL3", "CTYPE3", "CDELT3", "CUNIT3", "PS3_0", "PS3_1", "WCSAXES", ] for c in cards: if c in hdr: del hdr[c] wcs = WCS(hdr) else: wcs = None fig = self.plot_map( self.cation_neutral_ratio.value, "n$_{{cation}}$/n$_{{neutral}}$", wcs=wcs, ) pdf.savefig(fig) plt.close(fig) fig = self.plot_map(self.nc, "average PAH size (N$_{{C}}$)", wcs=wcs) pdf.savefig(fig) plt.close(fig) fig = self.plot_map( self.charge_fractions["neutral"], "PAH neutral fraction", wcs=wcs ) pdf.savefig(fig) plt.close(fig) fig = self.plot_map( self.charge_fractions["cation"], "PAH cation fraction", wcs=wcs ) pdf.savefig(fig) plt.close(fig) fig = self.plot_map( self.charge_fractions["anion"], "PAH anion fraction", wcs=wcs ) pdf.savefig(fig) plt.close(fig) fig = self.plot_map( self.size_fractions["large"], f"large PAH fraction (N$_{{C}}$ > {MEDIUM_SIZE})", wcs=wcs, ) pdf.savefig(fig) plt.close(fig) fig = self.plot_map( self.size_fractions["medium"], f"medium PAH fraction ({SMALL_SIZE} < N$_{{C}}$ ≤ {MEDIUM_SIZE})", wcs=wcs, ) pdf.savefig(fig) plt.close(fig) fig = self.plot_map( self.size_fractions["small"], f"small PAH fraction (N$_{{C}}$ ≤ {SMALL_SIZE})", wcs=wcs, ) pdf.savefig(fig) plt.close(fig) fig = self.plot_map(self.error, "error", wcs=wcs) pdf.savefig(fig) plt.close(fig) if doplots: ordinate = self.spectrum.flux.T for i in range(ordinate.shape[1]): for j in range(ordinate.shape[2]): fig = self.plot_fit(i, j) pdf.savefig(fig) plt.close(fig) return
[docs] def save_fits(self, filename, header=""): """Save FITS file summary of the fit results. Args: filename (str): Path to save to. header (str): Optional, header for the FITS file. """ def _fits_to_disk(hdr, filename): """Writes the FITS file to disk, with header. Args: hdr (fits.header.Header): FITS header. filename (str): Path of FITS file to be saved. """ hdr["DATE"] = (datetime.today().isoformat(), "When this file was generated") hdr["ORIGIN"] = ( "NASA Ames Research Center", "Organization generating this file", ) hdr["CREATOR"] = ( "pypahdb v{} (Python {}.{}.{})".format( pypahdb.__version__, sys.version_info.major, sys.version_info.minor, sys.version_info.micro, ), "Software used to create this file", ) hdr["AUTHOR"] = ( "Dr. C. Boersma, Dr. M.J. Shannon, and Dr. A. Maragkoudakis", "Authors of the software", ) cards = [ "PC3_3", "CRPIX3", "CRVAL3", "CTYPE3", "CDELT3", "CUNIT3", "PS3_0", "PS3_1", "WCSAXES", ] for c in cards: if c in hdr: del hdr[c] comments = ( "This file contains results from pypahdb.\n" "Pypahdb was created as part of the JWST ERS Program " "titled 'Radiative Feedback from Massive Stars as " "Traced by Multiband Imaging and Spectroscopic " "Mosaics' (ID 1288).\n" "Visit https://github.com/pahdb/pypahdb/ for more " "information on pypahdb." ) for line in comments.split("\n"): for chunk in [line[i: i + 72] for i in range(0, len(line), 72)]: hdr["COMMENT"] = chunk hdr["COMMENT"] = "1st extension has the PAH neutral fraction." hdr["COMMENT"] = "2nd extension has the PAH cation fraction." hdr["COMMENT"] = "3rd extension has the PAH anion fraction." hdr["COMMENT"] = "4th extension has the PAH large fraction." hdr["COMMENT"] = "5th extension has the PAH medium fraction." hdr["COMMENT"] = "6th extension has the PAH small fraction." hdr["COMMENT"] = "7th extension has the error." hdr["COMMENT"] = "8th extension has the cation to neutral PAH ratio." hdr["COMMENT"] = "9th extension has the average Nc." # Write results to FITS-file with multiple extension. primary_hdu = fits.PrimaryHDU(header=hdr) hdulist = fits.HDUList([primary_hdu]) for key, value in self.charge_fractions.items(): hdulist.append(fits.ImageHDU(data=value.value, name=key.upper())) for key, value in self.size_fractions.items(): hdulist.append(fits.ImageHDU(data=value.value, name=key.upper())) hdulist.append(fits.ImageHDU(data=self.error.value, name="ERROR")) hdulist.append(fits.ImageHDU(data=self.nc.value, name="NC")) hdulist.append( fits.ImageHDU( data=self.cation_neutral_ratio.value, name="CATION_NEUTRAL_RATIO" ) ) hdulist.writeto(filename, overwrite=True, output_verify="fix") return # Save results to FITS-file if isinstance(header, fits.header.Header): # TODO: Clean up header. hdr = copy.deepcopy(header) else: hdr = fits.Header() _fits_to_disk(hdr, filename) return
[docs] @staticmethod def plot_map(data, title, wcs=None): """Plots a map. Notes: None. Args: im (numpy): Image. title (string): Image title. Keywords: wcs (wcs.wcs): WCS (defaults to None). Returns: fig (matplotlib.figure.Figure): Instance of figure. """ m = np.nanmax(data) im = data / m cmap = colormaps["rainbow"] x, y = np.meshgrid(np.arange(0, im.shape[1] + 1), np.arange(0, im.shape[0] + 1)) x = x.astype("float") - 0.5 y = y.astype("float") - 0.5 if wcs: a, d = wcs.pixel_to_world_values(x, y) wcs_proj = wcs.deepcopy() wcs_proj.wcs.pc = [[-1, 0], [0, 1]] x, y = wcs_proj.world_to_pixel_values(a, d) ax = plt.subplot(projection=wcs_proj) else: ax = plt.subplot() ax.set_aspect("equal", adjustable="box", anchor="SW") ax.set_facecolor("#000000") ax.set_xlim(x.min() - 1, x.max() + 1) ax.set_ylim(y.min() - 1, y.max() + 1) args = list() for i in range(im.shape[0]): ii = [i, i + 1, i + 1, i, i] for j in range(im.shape[1]): if np.isfinite(im[i, j]): jj = [j, j, j + 1, j + 1, j] args += [x[ii, jj], y[ii, jj], colors.to_hex(cmap(im[i, j]))] plt.fill(*tuple(args)) if wcs: reverse = x[0, 0] < x[-1, 0] if reverse: ax.invert_xaxis() plt.arrow( 0.98, 0.02, 0.0, 0.1, transform=ax.transAxes, width=0.005, color="white", ) plt.text( 0.84, 0.02, "E", transform=ax.transAxes, color="white", horizontalalignment="center", verticalalignment="center", ) plt.arrow( 0.98, 0.02, -0.1, 0.0, transform=ax.transAxes, width=0.005, color="white", ) plt.text( 0.98, 0.16, "N", transform=ax.transAxes, color="white", horizontalalignment="center", verticalalignment="center", ) x0, y0 = ax.transLimits.inverted().transform((0.075, 0.1)) if reverse: x1 = x0 - 1 else: x1 = x0 + 1 y1 = y0 + 1 x = [x0, x1, x1, x0, x0] y = [y0, y0, y1, y1, y0] plt.fill( x, y, hatch=r"\\\\\\\\\/////////", edgecolor="white", facecolor=(1, 1, 1, 0.0), ) plt.text( x0 + (x1 - x0) / 2.0, y0 - 0.5, "pixel", color="white", horizontalalignment="center", verticalalignment="top", ) x0, y0 = ax.transLimits.inverted().transform((0.25, 0.1)) if reverse: x1 = x0 - 1.0 / (3600 * wcs.wcs.cdelt[0]) else: x1 = x0 + 1.0 / (3600 * wcs.wcs.cdelt[0]) plt.plot([x0, x1], [y0, y0], color="white", linewidth=1.5) plt.text( x0 + (x1 - x0) / 2.0, y0 - 0.5, '1"', color="white", horizontalalignment="center", verticalalignment="top", ) plt.xlabel("right ascension") plt.ylabel("declination") else: plt.xlabel("pixel [#]") plt.ylabel("pixel [#]") fig = plt.gcf() fig.set_layout_engine("constrained") colorbar = cm.ScalarMappable(cmap=cmap) colorbar.set_clim(0.0, m) cax = inset_axes( ax, width="2%", height="100%", loc="center right", borderpad=-1 ) plt.colorbar(colorbar, cax=cax) cax.set_ylabel(title) return fig
[docs] def plot_fit(self, i=0, j=0): """Plots a fit and saves it to a PDF. Notes: None. Args: i (int): Pixel coordinate (abscissa). j (int): Pixel coordinate (ordinate). Returns: fig (matplotlib.figure.Figure): Instance of figure. """ # Create figure on shared axes. fig = plt.figure() gs = gridspec.GridSpec(4, 1, height_ratios=[2, 1, 2, 2], figure=fig) # Add some spacing between axes. gs.update(wspace=0.025, hspace=0.00) ax0 = fig.add_subplot(gs[0]) ax1 = fig.add_subplot(gs[1], sharex=ax0) ax2 = fig.add_subplot(gs[2], sharex=ax0) ax3 = fig.add_subplot(gs[3], sharex=ax0) for ax in [ax0, ax2, ax3]: fmt = ax.yaxis.get_major_formatter() fmt.set_scientific(True) fmt.set_powerlimits((-3, 1)) for ax in [ax0, ax1, ax2]: plt.setp(ax.get_xticklabels(), visible=False) # Convenience definitions. abscissa = self.spectrum.spectral_axis charge = self.charge # Check if size of datapoints are too large and change marker size. ms = 5 if len(abscissa) < 1000 else 2 # ax0: Best fit. data = self.spectrum.flux.T[:, i, j] unc = None if self.spectrum.uncertainty: unc = self.spectrum.uncertainty.quantity.T[:, i, j] model = self.fit[:, i, j] ax0.errorbar( abscissa, data, yerr=unc, marker=".", ms=ms, mew=0.5, lw=0, color="black", ecolor="grey", capsize=2, label="input", zorder=0, ) ax0.plot(abscissa, model, label="fit", color="tab:red", lw=1.5) error_str = "$error$=%-4.2f" % (self.error[i][j]) ax0.text( 0.025, 0.88, error_str, ha="left", va="center", transform=ax0.transAxes ) ax0.set_ylabel( f'{self.spectrum.meta["colnames"][1]} [{self.spectrum.flux.unit}]' ) # ax1: Residual. ax1.plot(abscissa, data - model, lw=1, label="residual", color="gray") ax1.axhline(y=0, color="0.5", ls="--", dashes=(12, 16), zorder=-10, lw=0.5) # ax2: Size breakdown. ax2.errorbar( abscissa, data, yerr=unc, marker=".", ms=ms, mew=0.5, lw=0, color="black", ecolor="grey", capsize=2, zorder=0, ) ax2.plot(abscissa, model, color="tab:red", lw=1.5) ax2.plot( abscissa, self.size["large"][:, i, j], label="large", lw=1, color="tab:orange", ) ax2.plot( abscissa, self.size["medium"][:, i, j], label="medium", lw=1, color="tab:green", ) ax2.plot( abscissa, self.size["small"][:, i, j], label="small", lw=1, color="tab:blue" ) size_str = "$f_{large}$=%3.1f" % (self.size_fractions["large"][i][j]) ax2.text(0.025, 0.88, size_str, ha="left", va="center", transform=ax2.transAxes) ax2.set_ylabel( f'{self.spectrum.meta["colnames"][1]} [{self.spectrum.flux.unit}]' ) # ax3: Charge breakdown. ax3.errorbar( abscissa, data, yerr=unc, marker=".", ms=ms, mew=0.5, lw=0, color="black", ecolor="grey", capsize=2, zorder=0, ) ax3.plot(abscissa, model, color="red", lw=1.5) ax3.plot( abscissa, charge["anion"][:, i, j], label="anion", lw=1, color="tab:orange" ) ax3.plot( abscissa, charge["neutral"][:, i, j], label="neutral", lw=1, color="tab:cyan", ) ax3.plot( abscissa, charge["cation"][:, i, j], label="cation", lw=1, color="tab:purple", ) cnr_str = "$n_{cation}/n_{neutral}$=%3.1f" % ( self.charge_fractions["cation"][i][j] / self.charge_fractions["neutral"][i][j] ) ax3.text(0.025, 0.88, cnr_str, ha="left", va="center", transform=ax3.transAxes) ax3.set_xlabel( f'{self.spectrum.meta["colnames"][0]} [{self.spectrum.spectral_axis.unit}]' ) ax3.set_ylabel( f'{self.spectrum.meta["colnames"][1]} [{self.spectrum.flux.unit}]' ) # Set tick parameters and add legends to axes. for ax in (ax0, ax1, ax2, ax3): ax.tick_params( axis="both", which="both", direction="in", top=True, right=True ) ax.minorticks_on() ax.legend(loc=0, frameon=False) fig.set_layout_engine("constrained") return fig
# Make a cation to neutral ratio property. cation_neutral_ratio = property(_get_cation_neutral_ratio)